
Volume 11 (2&3) 1998, pp. 215 { 248

The Essence of Constraint Propagation

Krzysztof R. Apt

CWI, P.O. Box 94079, 1009 AB Amsterdam, The Netherlands

Department of Mathematics, Computer Science, Physics & Astronomy

University of Amsterdam, The Netherlands

We show that several constraint propagation algorithms (also called (local) con-

sistency, consistency enforcing, Waltz, �ltering or narrowing algorithms) are in-

stances of algorithms that deal with chaotic iteration. To this end we propose

a simple abstract framework that allows us to classify and compare these algo-

rithms and to establish in a uniform way their basic properties.

Note. This is a full, revised version of our article \From Chaotic Iteration to Con-

straint Propagation", Proc. of 24th International Colloquium on Automata, Lan-

guages and Programming (ICALP '97), (invited lecture), Springer-Verlag Lecture

Notes in Computer Science 1256, pp. 36-55, (1997).

Keywords: constraint propagation, chaotic iteration, generic algorithms.

1. Introduction

1.1. Motivation

Over the last ten years constraint programming emerged as an interesting and
viable approach to programming. In this approach the programming process is
limited to a generation of requirements (\constraints") and a solution of these
requirements by means of general and domain speci�c methods. The techniques
useful for �nding solutions to sets of constraints were studied for some twenty
years in the �eld of Constraint Satisfaction. One of the most important of
them is constraint propagation, a process of reducing a constraint satisfaction
problem to another one that is equivalent but \simpler".

The algorithms that achieve such a reduction usually aim at reaching some
\local consistency", which denotes some property approximating in some loose
sense \global consistency", which is the consistency of the whole constraint

215

satisfaction problem. In fact, most of the notions of local consistency are nei-
ther implied by nor imply global consistency (for a simple illustration of this
statement see, e.g., Example 34 in Subsection 3.3).

For some constraint satisfaction problems such an enforcement of local con-
sistency is already su�cient for �nding a solution in an e�cient way or for
determining that none exists. In some other cases this process substantially re-
duces the size of the search space which makes it possible to solve the original
problem more e�ciently by means of some search algorithm.

The aim of this paper is to show that the constraint propagation algorithms
(also called (local) consistency, consistency enforcing, Waltz, �ltering or nar-
rowing algorithms) can be naturally explained by means of chaotic iteration, a
basic technique used for computing limits of iterations of �nite sets of functions
that originated from numerical analysis (see, e.g., Chazan andMiranker [8])
and was adapted for computer science needs by Cousot and Cousot [11].

In our presentation we study chaotic iteration of monotonic and in
ationary
functions on partial orders �rst. This is done in Section 2. Then, in Section 3
we show how speci�c constraint propagation algorithms can be obtained by
choosing speci�c functions and speci�c partial orders.

This two-step presentation reveals that several constraint propagation al-
gorithms proposed in the literature are instances of generic chaotic iteration
algorithms studied here.

The adopted framework allows us to prove properties of these algorithms
in a simple, uniform way. This clari�es which properties of the so-called re-
duction functions (also called relaxation rules or narrowing functions) account
for correctness of these algorithms. For example, it turns out that idempotence
is not needed here. Further, this framework allows us to separate an analysis
of general properties, such as termination and independence of the scheduling
strategy, from consideration of speci�c, constraint-related properties, such as
equivalence. Even the consequences of choosing a queue instead of a set for
scheduling purposes can be already clari�ed without introducing constraints.

We also explain how by characterizing a given notion of a local consistency
as a common �xed point of a �nite set of monotonic and in
ationary functions
we can automatically generate an algorithm achieving this notion of consistency
by \feeding" these functions into a generic chaotic iteration algorithm. By
studying these functions in separation we can also compare speci�c constraint
propagation algorithms.

A recent work of Monfroy and R�ety [22] also shows how this approach
makes it possible to derive generic distributed constraint propagation algo-
rithms in a uniform way.

Several general presentations of constraint propagation algorithms have
been published before. In Section 4 we explain how our work relates to and
generalizes the work of others.

216

1.2. Preliminaries

Definition 1. Consider a sequence of domains D := D1; : : :; Dn.

{ By a scheme (on n) we mean a sequence of di�erent elements from [1::n].
{ We say that C is a constraint (on D) with scheme i1; : : :; il if C �Di1 �

� � � �Dil .
{ Let s := s1; : : :; sk be a sequence of schemes. We say that a sequence of

constraints C1; : : :; Ck on D is an s-sequence if each Ci is with scheme si.
{ By a Constraint Satisfaction Problem hD; Ci, in short CSP, we mean a

sequence of domains D together with an s-sequence of constraints C on D.

We call then s the scheme of hD; Ci. 2

In principle a constraint can have more than one scheme, for example when
all domains are equal. This eventuality should not cause any problems in the
sequel. Given an n-tuple d := d1; : : :; dn in D1 � � � � �Dn and a scheme s :=
i1; : : :; il on n we denote by d[s] the tuple di1 ; : : :; dil . In particular, for j 2
[1::n] d[j] is the j-th element of d. By a solution to a CSP hD; Ci, where
D := D1; : : :; Dn, we mean an n-tuple d 2 D1 � � � � � Dn such that for each
constraint C in C with scheme s we have d[s] 2 C.

Consider now a sequence of schemes s1; : : :; sk. By its union, written as
hs1; : : :; ski we mean the scheme obtained from the sequences s1; : : :; sk by re-
moving from each si the elements present in some sj , where j < i, and by con-
catenating the resulting sequences. For example, h(3; 7; 2); (4; 3; 7; 5); (3; 5; 8)i=
(3; 7; 2; 4; 5; 8). Recall that for an s1; : : :; sk-sequence of constraints C1; : : :; Ck

their join, written as C1 1 � � � 1 Ck, is de�ned as the constraint with scheme
hs1; : : :; ski and such that

d 2 C1 1 � � � 1 Ck i� d[si] 2 Ci for i 2 [1::k]:

Further, given a constraint C and a subsequence s of its scheme, we denote
by �s(C) the constraint with scheme s de�ned by

�s(C) := fd[s] j d 2 Cg;

and call it the projection of C on s. In particular, for a constraint C with
scheme s and an element j of s, �j(C) = fa j 9d 2 C a = d[j]g.

Given a CSP hD; Ci we denote by Sol(hD; Ci) the set of all solutions to it.
If the domains are clear from the context we drop the reference to D and just
write Sol(C). The following observation is useful.

Note 2. Consider a CSP hD; Ci with D := D1; : : :; Dn and C := C1; : : :; Ck

and with scheme s.

(i) Sol(hD; Ci) = C1 1 � � � 1 Ck 1i2I Di;

where I := fi 2 [1::n] j i does not appear in sg.
(ii) For every s-subsequence C of C and d 2 Sol(hD; Ci) we have d[hsi] 2

Sol(C).
2

217

Finally, we call two CSP's equivalent if they have the same set of solutions.
Note that we do not insist that these CSP's have the same sequence of domains
or the same scheme.

2. Chaotic Iterations

In our study of constraint propagation we proceed in two stages. In this section
we study chaotic iterations of functions on partial orders. Then in the next
section we explain how this framework can be readily used to explain constraint
propagation algorithms.

2.1. Chaotic Iterations on Simple Domains

In general, chaotic iterations are de�ned for functions that are projections on
individual components of a speci�c function with several arguments. In our
approach we study a more elementary situation in which the functions are
unrelated but satisfy certain properties. We need the following concepts.

Definition 3. Consider a set D, an element d 2 D and a set of functions

F := ff1; : : :; fkg on D.

{ By a run (of the functions f1; : : :; fk) we mean an in�nite sequence of num-

bers from [1::k].
{ A run i1; i2; : : : is called fair if every i 2 [1::k] appears in it in�nitely often.

{ By an iteration of F associated with a run i1; i2; : : : and starting with d we

mean an in�nite sequence of values d0; d1; : : : de�ned inductively by

d0 := d;

dj := fij (dj�1):

When d is the least element of D in some partial order clear from the

context, we drop the reference to d and talk about an iteration of F .
{ An iteration of F is called chaotic if it is associated with a fair run. 2

Definition 4. Consider a partial order (D; v). A function f on D is called

{ in
ationary if x v f(x) for all x,
{ monotonic if x v y implies f(x) v f(y) for all x; y,
{ idempotent if f(f(x)) = f(x) for all x. 2

In what follows we study chaotic iterations on speci�c partial orders.

Definition 5. We call a partial order (D; v) an t-po if

{ D contains the least element, denoted by ?,

{ for every increasing sequence

d0 v d1 v d2 : : :

218

of elements from D, the least upper bound of the set

fd0; d1; d2; : : :g;

denoted by
F1

n=0 dn and called the limit of d0; d1; : : :, exists,
{ for all a; b 2 D the least upper bound of the set fa; bg, denoted by a t b,

exists.

Further, we say that

{ an increasing sequence d0 v d1 v d2 : : : eventually stabilizes at d if for

some j � 0 we have di = d for i � j,

{ a partial order satis�es the �nite chain property if every increasing sequence
of its elements eventually stabilizes. 2

Intuitively, ? is an element with the least amount of information and a v b

means that b contains more information than a. Clearly, the second condition
of the de�nition of t-po is automatically satis�ed if D is �nite.

It is also clear that t-po's are closed under the Cartesian product. In the
applications we shall use speci�c t-po's built out of sets and their Cartesian
products.

Definition 6. Let D be a set. We say that a family F(D) of subsets of D is

based on D if

{ D 2 F(D),
{ for every decreasing sequence

X0 � X1 � X2: : :

of elements of F(D)

\1i=0Xi 2 F(D);

{ for all X;Y 2 F(D) we have X \ Y 2 F(D).

That is, a set F(D) of subsets of D is based on D i� F(D) with the relation

v de�ned by

X v Y i� X � Y

is an t-po. In this t-po ? = D and X t Y = X \ Y . We call (F(D);v) an
t-po based on D. 2

The following two examples of families of subsets based on a domain will
be used in the sequel.

Example 7. De�ne

F(D) := P(D);

219

that is F(D) consists of all subsets of D. This family of subsets will be used to

discuss general constraint propagation algorithms. 2

Example 8. Let (D; v) be a partial order with the v -least element min,
the v -greatest element max and such that for every two elements a; b 2 D

both a t b and a u b exists.

Examples of such partial orders are a linear order with the v -least element

and the v -greatest element and the set of all subsets of a given set with the

subset relation.

Given two elements a; b of D de�ne

[a; b] := fc j a � c and c � bg

and call such a set an interval. So for b < a we have [a; b] = ;, for b = a we

have [a; b] = fag and [min::max] = D.

Let now F be a �nite subset of D containing min and max. De�ne

F(D) := f[a; b] j a; b 2 Fg;

that is F(D) consists of all intervals with the bounds in F . Note that F(D) is
indeed a family of subsets based on D since

{ D = [min::max],
{ F(D) is �nite, so every decreasing sequence of elements of F(D) eventually
stabilizes,

{ for a; b; c; d 2 F we have

[a; b] \ [c; d] = [a t c; b u d]:

Such families of subsets will be used to discuss constraint propagation al-

gorithms on reals. In these applications D will be the set of real numbers aug-

mented with �1 and +1 and F the set of
oating point numbers. 2

The following observation can be easily distilled from a more general result
due to Cousot and Cousot [11]. To keep the paper self-contained we provide a
direct proof.

Theorem 9. [(Chaotic Iteration)] Consider an t-po (D; v) and a set of

functions F := ff1; : : :; fkg on D. Suppose that all functions in F are in
ation-

ary and monotonic. Then the limit of every chaotic iteration of F exists and

coincides with

1G
j=0

f " j;

where the function f on D is de�ned by:

f(x) :=

kG
i=1

fi(x)

220

and f " j is an abbreviation for f j(?), the j-th fold iteration of f started at ?.

Proof. First, notice that f is in
ationary, so
F1

j=0 f " j exists. Fix a chaotic
iteration d0; d1; : : : of F associated with a fair run i1; i2; : : :. Since all functions
fi are in
ationary,

F1
j=0 dj exists. The result follows directly from the following

two claims.

Claim 1. 8j 9m f " j v dm.

Proof. We proceed by induction on j.

Base. j = 0. As f " 0 = ? = d0, the claim is obvious.

Induction step. Assume that for some j � 0 we have f " j v dm for some
m � 0. Since

f " (j + 1) = f(f " j) =

kG
i=1

fi(f " j);

it su�ces to prove

8i 2 [1::k] 9mi fi(f " j) v dmi
: (1)

Indeed, we have then by the fact that dl v dl+1 for l � 0

kG
i=1

fi(f " j) v

kG
i=1

dmi
v dm0

where m0 := maxfmi j i 2 [1::k]g.
So �x i 2 [1::k]. By fairness of the considered run i1; i2; : : :, for somemi > m

we have imi
= i. Then dmi

= fi(dmi�1). Now dm v dmi�1, so by the mono-
tonicity of fi we have

fi(f " j) v fi(dm) v fi(dmi�1) = dmi
:

This proves (1). 2

Claim 2. 8m dm v f " m.

Proof. The proof is by a straightforward induction on m. Indeed, for m = 0
we have d0 = ? = f " 0, so the induction base holds.

To prove the induction step suppose that for some m � 0 we have dm v f "

m. For some i 2 [1::k] we have dm+1 = fi(dm), so by the monotonicity of f we
get dm+1 = fi(dm) v f(dm) v f(f " m) = f " (m+ 1): 2

In many situations some chaotic iteration studied in the Chaotic Iteration
Theorem 9 eventually stabilizes. This is for example the case when (D; v) sat-
is�es the �nite chain property. In such cases the limit of every chaotic iteration
can be characterized in an alternative way.

221

Corollary 10. [(Stabilization)] Suppose that under the assumptions of the

Chaotic Iteration Theorem 9 some chaotic iteration of F eventually stabilizes.

Then every chaotic iteration of F eventually stabilizes at the least �xed point

of f .

Proof. It su�ces to note that if some chaotic iteration d0; d1: : : of F eventually
stabilizes at some dm then by Claims 1 and 2 f " m = dm, so

1G
j=0

f " j = f " m: (2)

Then, again by Claims 1 and 2, every chaotic iteration of F stabilizes at f " m
and it is easy to see that by virtue of (2) f " m is the least �xed point of f . 2

Finally, using the above results we can compare chaotic iterations resulting
from di�erent sets of functions.

Corollary 11. [(Comparison)] Consider an t-po (D; v) and two set of

functions, F := ff1; : : :; fkg and G := fg1; : : :; glg on D. Suppose that all func-

tions in F and G are in
ationary and monotonic. Further, assume that for

i 2 [1::k] there exist j1; : : :; jm 2 [1::l] such that

fi(x) v gj1 � : : : � gjm(x) for all x.

Then lim(F) v lim(G) for the uniquely de�ned limits lim(F) and lim(G) of
the chaotic iterations of F and G.

Proof. Straightforward using the Chaotic Iteration Theorem 9 and the fact
that the functions in G are in
ationary. 2

2.2. Chaotic Iterations on Compound Domains

Not much more can be deduced about the process of the chaotic iteration
unless the structure of the domain D is further known. So assume now that
t-po (D; v) is the Cartesian product of the t-po's (Di; v i), for i 2 [1::n]. In
what follows we consider a modi�cation of the situation studied in the Chaotic
Iteration Theorem 9 in which each function fi a�ects only certain components
of D.

Consider the partial orders (Di; v i), for i 2 [1::n] and a scheme s :=
i1; : : :; il on n. Then by (Ds; v s) we mean the Cartesian product of the partial
orders (Dij ; v ij), for j 2 [1::l].

Given a function f on Ds we say that f is with scheme s. Instead of de�ning
iterations for the case of the functions with schemes, we rather reduce the situ-
ation to the one studied in the previous subsection. To this end we canonically
extend each function f on Ds to a function f+ on D as follows. Suppose that
s = i1; : : :; il and

222

f(di1 ; : : :; dil) = (e0i1 ; : : :; e
0
il
):

Let for j 2 [1::n]

ej :=

�
e0j if j is an element of s;

dj otherwise.

Then we set

f+(d1; : : :; dn) := (e1; : : :; en):

Suppose now that (D; v) is the Cartesian product of the t-po's (Di; v i),
for i 2 [1::n], and F := ff1; : : :; fkg is a set of functions with schemes that are
all in
ationary and monotonic. Then the following algorithm can be used to
compute the limit of the chaotic iterations of F+ := ff+1 ; : : :; f

+

k g. We say here
that a function f depends on i if i is an element of its scheme.

Generic Chaotic Iteration Algorithm (CI)

d := (?; : : :;?)| {z }
n times

;

d0 := d;
G := F ;
while G 6= ; do

choose g 2 G; suppose g is with scheme s;
G := G� fgg;
d0[s] := g(d[s]);
if d[s] 6= d0[s] then

G := G [ff 2 F j f depends on some i in s such that d[i] 6= d0[i]g;
d[s] := d0[s]

�

od

Obviously, the condition d[s] 6= d0[s] can be omitted here. We retained it to
keep the form of the algorithm more intuitive.

The following observation will be useful in the proof of correctness of this
algorithm.

Note 12. Consider the partial orders (Di; v i), for i 2 [1::n], a scheme s on

n and a function f with scheme s. Then

(i) f is in
ationary i� f+ is.

(ii) f is monotonic i� f+ is. 2

Observe that, in spite of the name of the algorithm, its in�nite executions
do not need to correspond to chaotic iterations. The following example will be
of use for a number of di�erent purposes.

223

Example 13. Consider the set of natural numbers N augmented with !, with

the order �. In this order k � ! for k 2 N . Next, we consider the following

three functions on N [f!g:

f1(n) :=

8<
:

n+ 1 if n is even;

n if n is odd;

! if n is !,

f2(n) :=

8<
:

n+ 1 if n is odd;

n if n is even;

! if n is !,

f3(n) := !:

Clearly, the underlying order is an t-po and the functions f1; f2 and f3 are

all in
ationary, monotonic and idempotent. Now, there is an in�nite execution

of the CI algorithm that corresponds with the run 1; 2; 1; 2; : : :. This execution
does not correspond to any chaotic iteration of ff1; f2; f3g. 2

However, when we focus on terminating executions we obtain the following
result in the proof of which our analysis of chaotic iterations is of help.

Theorem 14. [(CI)]

(i) Every terminating execution of the CI algorithm computes in d the least

�xed point of the function f on D de�ned by

f(x) :=

kG
i=1

f+i (x):

(ii) If all (Di; v i), where i 2 [1::n], satisfy the �nite chain property, then

every execution of the CI algorithm terminates.

Proof. It is simpler to reason about a modi�ed, but equivalent, algorithm in
which the assignments d0[s] := g(d[s]) and d[s] := d0[s] are respectively replaced
by d0 := g+(d) and d := d0 and the test d[s] 6= d0[s] by d 6= d0.

(i) Note that the formula

I := 8f 2 F �G f+(d) = d

is an invariant of the while loop of the modi�ed algorithm. Thus upon its
termination

(G = ;) ^ I

holds, that is

8f 2 F f+(d) = d:

224

Consequently, some chaotic iteration of F+ eventually stabilizes at d. Hence d is
the least �xpoint of the function f de�ned in item (i) because the Stabilization
Corollary 10 is applicable here by virtue of Note 12.

(ii) Consider the lexicographic order of the partial orders (D;w) and (N ;�),
de�ned on the elements of D �N by

(d1; n1) �lex (d2; n2) i� d1 = d2 or (d1 = d2 and n1 � n2):

We use here the inverse order = de�ned by: d1 = d2 i� d2 v d1 and d2 6= d1.
By Note 12(i) all functions f+i are in
ationary, so with each while loop

iteration of the modi�ed algorithm the pair

(d; card G)

strictly decreases in this order �lex. However, in general the lexicographic order
(D�N ;�lex) is not well-founded and in fact termination is not guaranteed. But
assume now additionally that each partial order (Di; v i) satis�es the �nite
chain property. Then so does their Cartesian product (D; v). This means
that (D;w) is well-founded and consequently so is (D�N ;�lex) which implies
termination. 2

When all considered functions fi are also idempotent, we can reverse the
order of the two assignments to G, that is to put the assignment G := G�fgg

after the if-then-� statement, because after applying an idempotent function
there is no use in applying it immediately again. Let us denote by CII the
algorithm resulting from this movement of the assignment G := G� fgg.

More specialized versions of the CI and CII algorithms can be obtained by
representing G as a queue. To this end we use the operation enqueue(F;Q)
which for a set F and a queue Q enqueues in an arbitrary order all the elements
of F in Q, denote the empty queue by empty, and the head and the tail of
a non-empty queue Q respectively by head(Q) and tail(Q). The following
algorithm is then a counterpart of the CI algorithm.

Generic Chaotic Iteration Algorithm with a Queue (CIQ)

d := (?; : : :;?)| {z }
n times

;

d0 := d;
Q := empty;
enqueue(F;Q);
while Q 6= empty do

g := head(Q); suppose g is with scheme s;
Q := tail(Q);
d0[s] := g(d[s]);
if d[s] 6= d0[s] then

enqueue(ff 2 F j f depends on some i in s such that d[i] 6= d0[i]g; Q);

225

d[s] := d0[s]
�

od

Denote by CIIQ the modi�cation of the CIQ algorithm that is appropriate
for the idempotent functions, so the one in which the assignment Q := tail(Q)
is performed after the if-then-� statement.

It is easy to see that the claims of the CI Theorem 14 also hold for the CII,
CIQ and CIIQ algorithms. A natural question arises whether for the special-
ized versions CIQ and CIIQ some additional properties can be established. The
answer is positive. We need an auxiliary notion and a result �rst.

Definition 15. Consider a set of functions F := ff1; : : :; fkg on a domain D.

{ We say that an element i 2 [1::k] is eventually irrelevant for an iteration
d0; d1; : : : of F if 9m � 0 8j � m fi(dj) = dj .

{ An iteration of F is called semi-chaotic if every i 2 [1::k] that appears

�nitely often in its run is eventually irrelevant for this iteration. 2

So every chaotic iteration is semi-chaotic but not conversely.

Note 16.

(i) Every semi-chaotic iteration � corresponds to a chaotic iteration �0 with the

same limit as � and such that � eventually stabilizes at some d i� �0 does.

(ii) Every in�nite execution of the CIQ (respectively CIIQ) algorithm corre-

sponds to a semi-chaotic iteration.

Proof.

(i) � can be transformed into the desired chaotic iteration �0 by repeating from
a certain moment on some elements of it.

(ii) Consider an in�nite execution of the CIQ algorithm. Let i1; i2; : : : be the
run associated with it and � := d0; d1; : : : the iteration of F+ associated with
this run.

Consider the set A of the elements of [1::k] that appear �nitely often in
the run i1; i2; : : :. For some m � 0 we have ij 62 A for j > m. This means by
the structure of this algorithm that after m iterations of the while loop no
function fi with i 2 A is ever present in the queue Q.

By virtue of the invariant I used in the proof of the CI Theorem 14 we then
have f+i (dj) = dj for i 2 A and j � m. This proves that � is semi-chaotic.

The proof for the CIIQ algorithm is the same. 2

Item (i) shows that the results of Subsection 2.1 can be strengthened to
semi-chaotic iterations. However, the property of being a semi-chaotic iteration
cannot be determined from the run only. So, for simplicity, we decided to limit
our exposition to chaotic iterations. Next, it is easy to show that item (ii)

cannot be strengthened to chaotic iterations.

226

We can now prove the desired results. The �rst one shows that the non-
determinism present in the CIQ and CIIQ algorithms has no bearing on their
termination.

Theorem 17. [(Termination)] If some execution of the CIQ (respectively CIIQ)

algorithm terminates, then all executions of the CIQ (respectively CIIQ) algo-

rithm terminate.

Proof.We concentrate on the CIQ algorithm. For the CIIQ algorithm the proof
is the same.

Consider a terminating execution of the CIQ algorithm. Construct a chaotic
iteration of F+ the initial pre�x of which corresponds with this execution. By
virtue of the invariant I this iteration eventually stabilizes. By the Stabilization
Corollary 10

every chaotic iteration of F+ eventually stabilizes. (3)

Suppose now by contradiction that some execution of the CIQ algorithm
does not terminate. Let � be the iteration of F+ associated with this execution.
By the structure of this algorithm

� does not eventually stabilize. (4)

By Note 16(ii) � is a semi-chaotic iteration. Consider a chaotic iteration �0

of F+ that corresponds with � by virtue of Note 16(i). We conclude by (4) that
�0 does not eventually stabilize. This contradicts (3). 2

So for a given Cartesian product (D; v) of the t-po's and a �nite set F of
in
ationary, monotonic and idempotent functions either all executions of the
CIQ (respectively CIIQ) algorithm terminate or all of them are in�nite. In the
latter case we can be more speci�c.

Theorem 18. [(Non-termination)] For every in�nite execution of the CIQ (re-

spectively CIIQ) algorithm the limit of the corresponding iteration of F exists

and coincides with

1G
j=0

f " j;

where f is de�ned as in the CI Theorem 14(i).

Proof. Consider an in�nite execution of the CIQ algorithm. By Note 16(ii) it
corresponds to a semi-chaotic iteration � of F+. By Note 16(i) � corresponds
to a chaotic iteration of F+ with the same limit. The desired conclusion now
follows by the Chaotic Iteration Theorem 9.

The proof for the CIIQ algorithm is the same. 2

227

Neither of the above two results holds for the CI and CII algorithms. Indeed,
take the t-po (N [f!g;�) and the functions f1; f2; f3 of Example 13. Then
clearly both in�nite and �nite executions of the CI and CII algorithms exist.
We leave to the reader the task of modifying Example 13 in such a way that
for both CI and CII algorithms in�nite executions exist with di�erent limits of
the corresponding iterations.

3. Constraint Propagation

Let us return now to the study of CSP's. We show here how the results of the
previous section can be used to explain the constraint propagation process.

In general, two basic approaches fall under this name:

{ reduce the constraints while maintaining equivalence;
{ reduce the domains while maintaining equivalence.

3.1. Constraint Reduction

In each step of the constraint reduction process one or more constraints are
replaced by smaller ones. In general, the smaller constraints are not arbitrary.
For example, when studying linear constraints usually the smaller constraints
are also linear.

To model this aspect of constraint reduction we associate with each CSP
an t-po that consists of the CSP's that can be generated during the constraint
reduction process.

Because the domains are assumed to remain unchanged, we can identify
each CSP with the sequence of its constraints. This leads us to the following
notions.

Consider a CSP P := hD;C1; : : :; Cki. Let for i 2 [1::k] (F(Ci);�) be an
t-po based on Ci. We call the Cartesian product (CO; v) of (F(Ci);�), with
i 2 [1::k], a constraint t-po associated with P .

As in Subsection 2.2, for a scheme s := i1; : : :; il we denote by (COs; v s)
the Cartesian product of the partial orders (F(Cij);�), where j 2 [1::l].

Note that COs = F(Ci1) � � � � � F(Cil). Because we want now to use
constraints in our analysis and constraint are sets of tuples, we identify COs

with the set

fX1 � � � � �Xl j Xj 2 F(Cij) for j 2 [1::l]g:

In this way we can write the elements of COs as Cartesian products X1�� � ��

Xl, so as (speci�c) sets of l-tuples, instead of as (X1; : : :; Xl), and similarly with
CO.

Note that C1 � � � � � Ck is the v -least element of CO. Also, note that
because of the use of the inverse subset order � we have forX1�� � ��Xl 2 COs

and Y1 � � � � � Yl 2 COs

X1 � � � � �Xl v sY1 � � � � � Yl i� X1 � � � � �Xl � Y1 � � � � � Yl
(i� Xi � Yi for i 2 [1::l]),

228

(X1 � � � � �Xl) ts (Y1 � � � � � Yl) = (X1 � � � � �Xl) \ (Y1 � � � � � Yl)
(= (X1 \ Y1)� � � � � (Xl \ Yl)).

This allows us to use from now on the set theoretic counterparts � and \ of
v s and ts. Note that for the partial order (COs; v s) a function g on COs

is in
ationary i� C � g(C) and g is monotonic i� it is monotonic w.r.t. the set
inclusion.

So far we have introduced an t-po associated with a CSP. Next, we intro-
duce functions by means of which chaotic iterations will be generated.

Definition 19. Consider a CSP hD;C1; : : :; Cki together with a sequence of

families of sets F(Ci) based on Ci, for i 2 [1::k], and a scheme s on k. By

a constraint reduction function with scheme s we mean a function g on COs

such that for all C 2 COs

{ C � g(C),

{ Sol(C) = Sol(g(C)). 2

C is here a Cartesian product of some constraints and in the second condi-
tion we identi�ed it with the sequence of these constraints, and similarly with
g(C). The �rst condition states that g reduces the constraints Ci, where i is
an element of s, while the second condition states that during this constraint
reduction process no solution to C is lost.

Example 20. As a �rst example of a constraint reduction function take F(C) :=
P(C) for each constraint C and consider the following function g on some COs:

g(C �C) := C 0 �C;

where C 0 = �t(Sol(C;C)) and t is the scheme of C. In other words, C 0 is the

projection of the set of solutions of (C;C) on the scheme of C.

To see that g is indeed a constraint reduction function, �rst note that by the

de�nition of Sol we have C 0 � C, so C �C � g(C �C). Next, note that for

d 2 Sol(C;C) we have d[t] 2 �t(Sol(C;C)), so d 2 Sol(C 0;C). This implies

that Sol(C;C) = Sol(g(C;C)):

Note also that g is monotonic w.r.t. the set inclusion and idempotent. 2

Example 21. As another example that is of importance for the discussion in

Subsection 4.1 consider a CSP hD1; : : :; Dn; Ci of binary constraints such that

for each scheme i; j on n there is exactly one constraint, which we denote by

Ci;j . Again put F(C) := P(C) for each constraint C.

De�ne now for each scheme k; l;m on n the following function gmk;l on COs,

where s is the triple corresponding to the positions of the constraints Ck;l; Ck;m

and Cm;l in C:

gmk;l(Xk;l �Xk;m �Xm;l) := (Xk;l \�k;l(Xk;m 1 Xm;l))�Xk;m �Xm;l:

229

To prove that the functions gmk;l are constraint reduction functions it su�ces

to note that by simple properties of the 1 operation and by Note 2(i) we have

Xk;l \�k;l(Xk;m 1 Xm;l) = �k;l(Xk;l 1 Xk;m 1 Xm;l)
= �k;l(Sol(Xk;l; Xk;m; Xm;l)),

so these functions are special cases of the functions de�ned in Example 20. 2

Example 22. As a �nal example consider linear inequalities over integers. Let

x1; : : :; xn be di�erent variables ranging over integers, where n > 0. By a linear
inequality we mean here a formula of the form

nX
i=1

aixi � b;

where a1; : : :; an and b are integers.

In what follows we consider CSP's that consist of �nite or countable sets of

linear inequalities. Each such set determines a subset of Nn which we view as

a single constraint. Call such a subset an INT-LIN set.

Fix now a constraint C that is an INT-LIN set formed by a �nite or count-

able set LI of linear inequalities. De�ne F(C) to be the set of INT-LIN sets

formed by a �nite or countable set of linear inequalities extending LI. Clearly,
F(C) is a family of sets based on C.

Given now m linear inequalities

nX
i=1

a
j
ixi � bj ;

where j 2 [1::m], and m nonnegative reals c1; : : :; cm, we construct a new linear

inequality

nX
i=1

(

mX
j=1

cja
j
i)xi �

mX
j=1

cjb
j :

If for j 2 [1::n] each coe�cient
Pm

j=1 cja
j
i is an integer, then we replace the

right-hand side by b
Pm

i=1 cjb
jc.

This yields the inequality

nX
i=1

(

mX
j=1

cja
j
i)x

j
i � b

mX
j=1

cjb
jc

that is called a Gomory-Chv�atal cutting plane.
An addition of a cutting plane to a set of linear inequalities on integers

maintains equivalence, so it is an example of a constraint reduction function.

It is well-known that the process of deriving cutting planes does not have

to stop after one application (see, e.g., Cook, Cunningham, Pulleyblank, and

Schrijver [9, Section 6.7]), so this reduction function is non-idempotent. 2

230

We now show that when the constraint reduction function discussed in Ex-
ample 20 is modi�ed by applying it to each argument constraint simultaneously,
it becomes a constraint reduction function that is in some sense optimal.

More precisely, assume the notation of De�nition 26 and let s := i1; : : :; il.
De�ne a function � on COs as follows:

�(C) := C0;

where

C := Ci1 � � � � � Cil ;

C0 := C 0
i1
� � � � � C 0

il
;

with each C 0
ij
:= �tj (Sol(C)), where tj is the scheme of Cij .

So �(C) replaces every constraint C in C by the projection of Sol(C) on
the scheme of C.

Note 23. [(Characterization)] Assume the notation of De�nition 19. A func-

tion g on COs is a constraint reduction function i� for all C 2 COs

�(C)� g(C)�C:

Proof. Suppose that s := i1; : : :; il. We have the following string of equiva-
lences for

g(C) := Xi1 � � � � �Xil :

�(C)� g(C) i� �tj (Sol(C))�Xij for j 2 [1::l] i� Sol(C)� Sol(g(C)).
So �(C)� g(C)�C i� (Sol(C) = Sol(g(C)) and g(C)�C). 2

Take now a CSP P := hD;C1; : : :; Cki and a sequence of constraintsC
0
1; : : :; C

0
k

such that C 0
i � Ci for i 2 [1::k]. Let P 0 := hD;C 0

1; : : :; C
0
ki. We say then that P 0

is determined by P and C 0
1 � � � � �C 0

k. Further, we say that P 0 is smaller than

P 0 and P is larger than P 0.
Consider now a CSP P := hD;C1; : : :; Cki and a constraint reduction func-

tion g. Suppose that

g+(C1 � � � � � Ck) = C 0
1 � � � � � C 0

k;

where g+ is the canonic extension of g to CO de�ned in Subsection 2.2. We
now de�ne

g(P) := hD;C 0
1; : : :; C

0
ki:

We have the following observation.

Lemma 24. Consider a CSP P and a constraint reduction function g. Then P

and g(P) are equivalent.

231

Proof. Suppose that s is the scheme of the function g and let C be an element
of COs. So C is a Cartesian product of some constraints. As before we identify
it with the sequence of these constraints. For some sequence of schemes s, C

is the s-sequence of the constraints of P .
Let now d be a solution to P . Then by Note 2(ii) we have d[hsi] 2 Sol(C),

so by the de�nition of g also d[hsi] 2 Sol(g(C)). Hence for every constraint
C 0 in g(C) with scheme s0 we have d[s0] 2 C 0 since d[hsi][s0] = d[s0]. So d

is a solution to g(P). The converse implication holds by the de�nition of a
constraint reduction function. 2

When dealing with a speci�c CSP with a constraint t-po associated with
it we have in general several constraint reduction functions, each de�ned on a
possibly di�erent domain. To study the e�ect of their interaction we can use
the Chaotic Iteration Theorem 9 in conjunction with the above Lemma. After
translating the relevant notions into set theoretic terms we get the following
direct consequence of these results. (In this translation COs corresponds to Ds

and CO to D.)

Theorem 25. [(Constraint Reduction)] Consider a CSP P := hD;C1; : : :; Cki

with a constraint t-po associated with it. Let F := fg1; : : :; gkg, where each gi
is a constraint reduction function. Suppose that all functions gi are monotonic

w.r.t. the set inclusion. Then

{ the limit of every chaotic iteration of F+ := fg+1 ; : : :; g
+

k g exists;

{ this limit coincides with
1\
j=0

gj(C1 � � � � � Ck);

where the function g on CO is de�ned by:

g(C) :=

k\
i=1

g+i (C);

{ the CSP determined by P and this limit is equivalent to P. 2

Informally, this theorem states that the order of the applications of the
constraint reduction functions does not matter, as long as none of them is
inde�nitely neglected. Moreover, the CSP corresponding to the limit of such
an iteration process of the constraint reduction functions is equivalent to the
original one.

Consider now a CSP P with a constraint t-po associated with it that sat-
is�es the �nite chain property. Then we can use the CI, CII, CIQ and CIIQ

algorithms to compute the limits of the chaotic iterations considered in the
above Theorem. We shall explain in Subsection 4.1 how by instantiating these
algorithms with speci�c constraint t-po's and constraint reduction functions
we obtain speci�c algorithms considered in the literature.

232

In each case, by virtue of the CI Theorem 14 and its reformulations for the
CII, CIQ and CIIQ algorithms, we can conclude that these algorithms compute
the greatest common �xpoint w.r.t. the set inclusion of the functions from F+.
Consequently, the CSP determined by P and this limit is the largest CSP that
is both smaller than P and is a �xpoint of the considered constraint reduction
functions.

So the limit of the constraint propagation process could be added to the
collection of important greatest �xpoints presented in Barwise and Moss [2].

3.2. Domain Reduction

In this subsection we study the domain reduction process. First, we associate
with each CSP an t-po that \focuses" on the domain reduction.

Consider a CSP P := hD1; : : :; Dn; Ci. Let for i 2 [1::n] (F(Di);�) be an
t-po based on Di. We call the Cartesian product (DO; v) of (F(Di);�), with
i 2 [1::n] a domain t-po associated with P .

As in Subsection 2.2, for a scheme s := i1; : : :; il we denote by (DOs; v s)
the Cartesian product of the partial orders (F(Dij);�), where j 2 [1::l]. Then,
as in the previous subsection, we identify DOs with the set

fX1 � � � � �Xl j Xj 2 F(Dij) for j 2 [1::l]g:

Next, we introduce functions that reduce domains. These functions are as-
sociated with constraints. Constraints are arbitrary sets of k-tuples for some
k, while the v s order and the ts operation are de�ned only on Cartesian
products. So to de�ne these functions we use the set theoretic counterparts �
and \ of v s and ts which are de�ned on arbitrary sets.

Definition 26. Consider a sequence of domains D1; : : :; Dn together with a

sequence of families of sets F(Di) based on Di, for i 2 [1::n], and a scheme

s on n. By a domain reduction function for a constraint C with scheme s we

mean a function f on DOs such that for all D 2 DOs

{ D � f(D),
{ C \D = C \ f(D). 2

The �rst condition states that f reduces the \current" domains associated
with the constraint C (so no solution to C is \gained"), while the second
condition states that during this domain reduction process no solution to C is
\lost". In particular, the second condition implies that if C �D then C � f(D).

Example 27. As a simple example of a domain reduction functions consider

a binary constraint C �D1 � D2. Let F(Di) := P(Di) with i 2 [1; 2] be the

families of sets based on D1 and D2.

De�ne now the projection functions �1 and �2 on DO1;2 = P(D1)�P(D2)
as follows:

�1(X � Y) := X 0 � Y;

233

where X 0 = fa 2 X j 9b 2 Y (a; b) 2 Cg, and

�2(X � Y) := X � Y 0;

where Y 0 = fb 2 Y j 9a 2 X (a; b) 2 Cg. It is straightforward to check that �1
and �2 are indeed domain reduction functions. Further, these functions are

monotonic w.r.t. the set inclusion and idempotent. 2

Example 28. As another example of a domain reduction function consider an

n-ary constraint C �D1 � � � � �Dn. Let for i 2 [1::n] the family of sets based

on Di be de�ned by F(Di) := P(Di).
Note that DO = P(D1)� � � � � P(Dn). De�ne now the projection function

�C by putting for D 2 DO

�C(D) := �1(C \D)� � � � ��n(C \D):

Recall from Subsection 1.2 that �i(C\D) = fa j 9d 2 C \D a = d[i]g. Clearly
�C is a domain reduction function for C and is monotonic w.r.t. the set inclu-

sion and idempotent.

Here the scheme of C is 1; : : :; n. Obviously, �C can be de�ned in an anal-

ogous way for a constraint C with an arbitrary scheme. 2

So all three domain reduction functions deal with projections, respectively
on the �rst, second or all components and can be visualized by means of Figure
1.

X

Y’

X’

Y

Figure 1. Domain reduction functions.

The following observation provides an equivalent de�nition of a domain re-
duction function in terms of the projection function de�ned in the last example.

234

Note 29. [(Characterization)] Assume the notation of De�nition 26. A func-

tion f on DOs is a domain reduction function for the constraint C i� for all

D 2 DOs

�C(D) � f(D)�D:

Proof. Suppose that s := i1; : : :; il. We have the following string of equiva-
lences for

f(D) := Xi1 � � � � �Xil :

�C(D)� f(D) i� �ij (C \D)�Xij for j 2 [1::l] i� C \D� f(D).
So �C(D)� f(D)�D i� (C \D = C \ f(D) and f(D)�D). 2

Intuitively, this observation means that the projection function �C is an
\optimal" domain reduction function. In general, however, �C does not need
to be a domain reduction function, since the sets �i(C \ D) do not have to
belong to the used families of sets based on the domain Di. The next example
provides an illustration of such a situation.

Example 30. Consider an n-ary constraint C on reals, that is C �Rn
+. Let

R+ := R [f+1;�1g, F be a �nite subset of R+ containing �1 and +1
and let the family F(R+) of subsets of R+ be de�ned as in Example 8. So

F(R+) = f[a; b] j a; b 2 Fg

and

DO = f[a1; b1]� � � � � [an; bn] j ai; bi 2 F for i 2 [1::n]g:

Further, given a subset X of R+ we de�ne

int(X) := \fY 2 F(R+) j X � Y g:

So int(X) is the smallest interval with bounds in F that contains X. Clearly,

int(X) exists for every X.

De�ne now the function f on DO by putting for D 2 DO

f(D) := int(�1(C \D))� � � � � int(�n(C \D)):

Benhamou and Older [6] proved that f is a domain reduction function that is

monotonic w.r.t. the set inclusion and idempotent. Note that the �rst property

is a direct consequence of the Characterization Note 29. 2

All the domain reduction functions given so far were idempotent. We now
provide an example of a natural non-idempotent reduction function.

Example 31. We consider linear equalities over integer interval domains. By

a linear equality we mean here a formula of the form

235

nX
i=1

aixi = b;

where a1; : : :; an and b are integers. form

In turn, by an integer interval we mean an expression of the form

[a::b]

where a and b are integers; [a::b] denotes the set of all integers between a and

b, including a and b.

The domain reduction functions for linear equalities over integer intervals

are simple modi�cations of the reduction rule introduced in Davis [12, page 306]

that dealt with linear constraints over closed intervals of reals. In the case of a

linear equalityX
i2POS

aixi �
X

i2NEG

aixi = b

where

{ ai is a positive integer for i 2 POS [NEG,
{ xi and xj are di�erent variables for i 6= j and i; j 2 POS [NEG,
{ b is an integer,

such a function is de�ned as follows (see, e.g., Apt [1]):

f([l1::h1]; : : :; [ln::hn]) := ([l01::h
0
1]; : : :; [l

0
n::h

0
n])

where for j 2 POS

l0j := max(lj ; d
je); h
0
j := min(hj ; b�jc);

for j 2 NEG

l0j := max(lj ; d�je); h
0
j := min(hj ; b�jc);

and where

�j :=
b�
P

i2POS�fjg aili +
P

i2NEG aihi

aj

�j :=
�b+

P
i2POS aili �

P
i2NEG�fjg aihi

aj

j :=
b�
P

i2POS�fjg aihi +
P

i2NEG aili

aj

and

�j :=
�b+

P
i2POS aihi �

P
i2NEG�fjg aili

aj

236

(It is worthwhile to mention that this function can be derived by means of

cutting planes mentioned in Example 22).

Fix now some initial integer intervals I1; : : :; In and let for i 2 [1::n] the
family of sets F(Ii) consist of all integer subintervals of Ii.

The above de�ned function f is then a domain reduction function de�ned

on the Cartesian product of F(Ii) for i 2 [1::n] and is easily seen to be non-

idempotent. For example, in case of the CSP

hx 2 [0::9]; y 2 [1::8] ; 3x� 5y = 4i

a straightforward calculation shows that

f([0::9]; [1::8]) = ([3::9]; [1::4])

and

f([3::9]; [1::4]) = ([3::8]; [1::4]):

2

Take now a CSP P := hD1; : : :; Dn; Ci and a sequence of domainsD0
1; : : :; D

0
n

such that D0
i �Di for i 2 [1::n]. Consider a CSP P 0 obtained from P by re-

placing each domain Di by D0
i and by restricting each constraint in C to these

new domains. We say then that P 0 is determined by P and D0
1 � � � � �D0

n.

Consider now a CSP P := hD1; : : :; Dn; Ci with a domain t-po associated
with it and a domain reduction function f for a constraint C of C. We now
de�ne f(P) to be the CSP obtained from P by reducing its domains using the
function f .

More precisely, suppose that

f+(D1 � � � � �Dn) = D0
1 � � � � �D0

n;

where f+ is the canonic extension of f to DO de�ned in Subsection 2.2. Then
f(P) is the CSP determined by P and D0

1�� � ��D0
n. The following observation

is an analogue of Lemma 24.

Lemma 32. Consider a CSP P and a domain reduction function f . Then P

and f(P) are equivalent.

Proof. Suppose that D1; : : :; Dn are the domains of P and assume that f is
a domain reduction function for C with scheme i1; : : :; il. By de�nition f is
de�ned on Di1 � � � � �Dil . Let

f(Di1 � � � � �Dil) = D0
i1
� � � � �D0

il
:

Take now a solution d to P . Then d[i1; : : :; il] 2 C, so by the de�nition of f
also d[i1; : : :; il] 2 D0

i1
� � � � �D0

il
. So d is also a solution to f(P). The converse

implication holds by the de�nition of a domain reduction function. 2

237

Finally, the following result is an analogue of the Constraint Reduction
Theorem 25. It is a consequence of Iteration Theorem 9 and the above Lemma,
obtained by translating the relevant notions into set theoretic terms. (In this
translation DOs corresponds to Ds and DO to D.)

Theorem 33. [(Domain Reduction)] Consider a CSP P := hD1; : : :; Dn; Ci
with a domain t-po associated with it. Let F := ff1; : : :; fkg, where each fi is a

domain reduction function for some constraint in C. Suppose that all functions

fi are monotonic w.r.t. the set inclusion. Then

{ the limit of every chaotic iteration of F+ := ff+1 ; : : :; f
+

k g exists;

{ this limit coincides with

1\
j=0

f j(D1 � � � � �Dn);

where the function f on DO is de�ned by:

f(D) :=

k\
i=1

f+i (D);

{ the CSP determined by P and this limit is equivalent to P. 2

The above result shows an analogy between the domain reduction functions.
In fact, the domain reduction functions can be modeled as constraint reduction
functions in the following way.

First, given a CSP hD1; : : :; Dn; Ci add to it n unary constraints, each of
which coincides with a di�erent domain Di. This yields

P := hD1; : : :; Dn; C; D1; : : :; Dni:

Obviously, both CSP's are equivalent.
Next, associate, as in the previous subsection, with each constraint C of P

an t-po F(C) based on it.
Take now a constraint C 2 C with a scheme s := i1; : : :; il and a function f

on DOs. De�ne a function g on

F(C)�F(Di1) � � � � F(Dil)

by

g(C 0;D) := (C 0; f(D)):

Then f is a domain reduction function i� g is a constraint reduction func-
tion, since Sol(C 0;D) := C 0 \D.

This simple representation of the domain reduction functions as the con-
straint reduction functions shows that the latter concept is more general and
explains the analogy between the results on the constraint reduction functions

238

and domain reduction functions. It also allows us to analyze the outcome of
\hybrid" chaotic iterations in which both domain reduction functions and con-
straint reduction functions are used.

We discussed the domain reduction functions separately, because, as we
shall see in the next section, they have been extensively studied, especially in
the context of CSP's with binary constraints and of interval arithmetic.

3.3. Automatic Derivation of Constraint Propagation Algorithms

We now show how speci�c provably correct algorithms for achieving a local
consistency notion can be automatically derived. The idea is that we charac-
terize a given local consistency notion as a common �xpoint of a �nite set of
monotonic, in
ationary and possibly idempotent functions and then instanti-
ate any of the CI, CII, CIQ or CIIQ algorithms with these functions. As it
is di�cult to de�ne local consistency formally, we illustrate the idea on two
examples.

Example 34. First, consider the notion of arc-consistency for n-ary relations,

de�ned in Mohr and Masini [21]. We say that a constraint C �D1�� � ��Dn

is arc-consistent if for every i 2 [1::n] and a 2 Di there exists d 2 C such that

a = d[i]. That is, for every involved domain each element of it participates in

a solution to C. A CSP is called arc consistent if every constraint of it is.

For instance, the CSP hf0; 1g; f0; 1g; =; 6=i that consists of two binary con-

straints, that of equality and inequality over the 0-1 domain, is arc consistent

(though obviously inconsistent).

Note that a CSP hD1; : : :; Dn; Ci is arc consistent i� for every constraint C

of it with a scheme s := i1; : : :; il we have �C(Di1 �� � ��Dil) = Di1�� � ��Dil ,

where �C is de�ned in Example 28. We noted there that the projection functions

�C are domain reduction functions that are monotonic w.r.t. the set inclusion

and idempotent.

By virtue of the CI Theorem 14 reformulated for the CII algorithm, we can

now use the CII algorithm to achieve arc consistency for a CSP with �nite

domains by instantiating the functions of this algorithm with the projection

functions �C .

By the Domain Reduction Theorem 33 we conclude that the CSP computed

by this algorithm is equivalent to the original one and is the greatest arc con-

sistent CSP that is smaller than the original one. 2

Example 35. Next, consider the notion of relational consistency proposed in

Dechter and van Beek [14]. Relational consistency is a very powerful concept

that generalizes several consistency notions discussed until now.

To de�ne it we need to introduce some auxiliary concepts �rst. Consider a

CSP hD1; : : :; Dn; Ci. Take a scheme t := i1; : : :; il on n. We call d 2 Di1 �

� � � � Dil a tuple of type t. Further, we say that d is consistent if for every

subsequence s of t and a constraint C 2 C with scheme s we have d[s] 2 C.

239

A CSP P is called relationallym-consistent if for any s-sequence C1; : : :; Cm

of di�erent constraints of P and a subsequence t of hsi, every consistent tuple

of type t belongs to �t(C1 1 � � � 1 Cm), that is, every consistent tuple of type

t can be extended to an element of Sol(C1; : : :; Cm).
As the �rst step we characterize this notion as a common �xed point of a

�nite set of monotonic and in
ationary functions.

Consider a CSP P := hD1; : : :; Dn;C1; : : :; Cki. Assume for simplicity that

for every scheme s on n there is a unique constraint with scheme s. Each CSP

is trivially equivalent with such a CSP | it su�ces to replace for each scheme

s the set of constraints with scheme s by their intersection and to introduce

\universal constraints" for the schemes without a constraint. By a \universal

constraint" we mean here a Cartesian product of some domains.

Consider now a scheme i1; : : :; im on k. Let s be such that Ci1 ; : : :; Cim is

an s-sequence of constraints and let t be a subsequence of hsi. Further, let Ci0

be the constraint of P with scheme t. Put s := h(i0); (i1; : : :; im)i. (Note that

if i0 does not appear in i1; : : :; im then s = i0; i1; : : :; im and otherwise s is the

permutation of i1; : : :; im obtained by transposing i0 with the �rst element.)

De�ne now a function gs on COs by

gs(C �C) := (C \�t(1 C))�C:

It is easy to see that if for each function gs of the above form we have

g+s (C1 � � � � � Ck) = C1 � � � � � Ck;

then P is relationally m-consistent. (The converse implication is in general

not true). Note that the functions gs are in
ationary and monotonic w.r.t. the

inverse subset order � and also idempotent.

Consequently, again by the CI Theorem 14 reformulated for the CII algo-

rithm, we can use the CII algorithm to achieve relational m-consistency for

a CSP with �nite domains by \feeding" into this algorithm the above de�ned

functions. The obtained algorithm improves upon the (authors' terminology)

brute force algorithm proposed in Dechter and van Beek [14] since the useless

constraint modi�cations are avoided.

As in Example 21, by simple properties of the 1 operation and by Note 2(i)

we have

C \�t(1 C) = �t(C 1 (1 C)) = �t(Sol(C;C)):

Hence, by virtue of Example 20, the functions gs are all constraint reduction

functions. Consequently, by the Constraint Reduction Theorem 25 we conclude

that the CSP computed by the just discussed algorithm is equivalent to the

original one. 2

4. Concluding Remarks

4.1. Related Work

As already mentioned in the introduction, the idea of chaotic iterations was
originally used in numerical analysis. The concept goes back to the �fties

240

and was successively generalized into the framework of Baudet [3] on which
Cousot and Cousot [11] was based. Our notion of chaotic iterations on par-
tial orders is derived from the last reference. A historical overview can be found
in Cousot [10].

Let us turn now to a review of the work on constraint propagation. We
show how our results provide a uniform framework to explain and generalize
the work of others.

It is illuminating to see how the attempts of �nding general principles behind
the constraint propagation algorithms repeatedly reoccur in the literature on
constraint satisfaction problems spanning the last twenty years.

As already stated in the introduction, the aim of the constraint propagation
algorithms is most often to achieve some form of local consistency. As a result
these algorithms are usually called in the literature \consistency algorithms" or
\consistency enforcing algorithms" though, as already mentioned, some other
names are also used.

The �rst constraint propagation algorithm was proposed in Waltz [29] in
the context of analysis of polyhedral scenes. InMackworth [19] this algorithm
was explained in more general terms of CSP's with binary constrains and a uni-
�ed framework was proposed to explain the so-called arc- and path-consistency
algorithms. Also the arc-consistency algorithm AC-3 and the path-consistency
algorithm PC-2 were proposed and the latter algorithm was obtained from the
former one by pursuing the analogy between both notions of consistency.

A version of AC-3 consistency algorithm can be obtained by instantiating
the CII algorithm with the domain reduction functions de�ned in Example
27, whereas a version of PC-2 algorithm can be obtained by instantiating this
algorithm with the constraint reduction functions de�ned in Example 21.

In Davis [12] another generalization of Waltz algorithm was proposed that
dealt with n-ary constraints. The algorithm proposed there can be obtained
by instantiating the CIQ algorithm with the projection functions of Example
27 generalized to n-ary constraints. To obtain a precise match the enqueue
operation in this algorithm should enqueue the projection functions related to
one constraint in \blocks".

In Dechter and Pearl[13] the notions of arc- and path-consistency were
modi�ed to directional arc- and path-consistency, versions that take into ac-
count some total order <d of the domain indices, and the algorithms for achiev-
ing these forms of consistency were presented. Such algorithms can be obtained
as instances of the CIQ algorithm as follows.

For the case of directional arc-consistency the queue in this algorithm should
be instantiated with the set of the domain reduction functions �1 of Example
27 for the constraints the scheme of which is consistent with the <d order.
These functions should be ordered in such a way that the domain reduction
functions for the constraint with the <d-large second index appear earlier. This
order has the e�ect that the �rst argument of the enqueue operation within
the if-then-� statement always consists of domain reduction functions that are
already in the queue. So this if-then-� statement can be deleted. Consequently,

241

the algorithm can be rewritten as a simple for loop that processes the selected
domain reduction functions �1 in the appropriate order.

For the case of directional path-consistency the constraint reduction func-
tions gmk;l should be used only with k; l <d m and the queue in the CIQ algorithm
should be initialized in such a way that the functions gmk;l with the <d-large m
index appear earlier. As in the case of directional arc-consistency this algorithm
can be rewritten as a simple for loop.

In Montanari and Rossi [23] a general study of constraint propagation
was undertaken by de�ning the notion of a relaxation rule and by proposing
a general relaxation algorithm. The notion of a relaxation rule coincides with
our notion of a constraint propagation function instantiated with the functions
de�ned in Example 20 and the general relaxation algorithm is the corresponding
instance of our CI algorithm.

In Montanari and Rossi [23] it was also shown that the notions of arc-
consistency and path-consistency can be de�ned by means of relaxation rules
and that as a result arc-consistency and path-consistency algorithms can be
obtained by instantiating with these rules their general relaxation algorithm.

Another, early attempt at providing a general framework to explain con-
straint propagation was undertaken in Caseau [7]. In this paper abstract inter-
pretations and a version of the CIQ algorithm are used to study iterations that
result from applying approximations of the projection functions of Example 27
generalized to n-ary constraints. It seems that for �nite domains these approx-
imation functions coincide with our concept of domain reduction functions.

Next, Van Hentenryck, Deville and Teng [28] presented a generic
arc consistency algorithm, called AC-5, that can be specialized to the known
arc-consistency algorithms AC-3 and AC-4 and also to new arc-consistency algo-
rithms for speci�c classes of constraints. More recently, this work was extended
in Deville, Barette and Van Hentenryck [15] to path-consistency algo-
rithms.

Let us turn now our attention to constraints over reals. In Lhomme [18]
the notion of arc B-consistency was introduced and an algorithm proposed that
enforces it for constraint satisfaction problems de�ned on reals. This algorithm
can be obtained by instantating our CI algorithm with the functions de�ned in
Example 30.

Next, in Benhamou, McAllester, and Van Hentenryck [5] and Ben-
hamou andOlder [6] speci�c functions, called narrowing functions, were asso-
ciated with constraints in the context of interval arithmetic for reals and some
properties of them were established. In our terminology it means that these are
idempotent and monotonic domain reduction functions. One of such functions
is de�ned in Example 28. As a consequence, the algorithms proposed in these
papers, called respectively a �xpoint algorithm and a narrowing algorithm,
become the instances of our CIIQ algorithm and CII algorithm.

Other two attempts to provide a general setting for constraint propaga-
tion algorithms can be found in Benhamou [4] and Telerman and Ushakov
[26]. In these papers instead of t-po's speci�c families of subsets of the consid-

242

ered domain are taken with the inverse subset order. In Benhamou [4] they
are called approximate domains and in Telerman and Ushakov [26] sub-
de�nite models. Then speci�c algorithms are used to compute the outcome of
constraint propagation. The considered families of subsets correspond to our t-
po's, the discussed functions are in our terminology idempotent and monotonic
domain restriction functions and the considered algorithms are respectively the
instances of our CII and CI algorithm.

In both papers it was noted that the algorithms compute the same value
independently of the order of the applications of the functions used. In Ben-
hamou [4] local consistency is de�ned as the largest �xpoint of such a collection
of functions and it is observed that on �nite domains the CII algorithm com-
putes this largest �xpoint. In Telerman and Ushakov [26] the subde�nite
models are discussed as a general approach to model simulation, imprecise data
and constraint programming. Also related articles that were published in 80s
in Russian are there discussed.

The importance of fairness for the study of constraint propagation was �rst
noticed in G�usgen and Hertzberg [17] where chaotic iterations of monotonic
domain reduction functions were considered. Results of Section 2 (in view of
their applications to the domain reduction process in Subsection 3.2) generalize
the results of this paper to arbitrary t-po's and their Cartesian products. In
particular, Stabilization Corollary 10 generalizes the main result of this paper.

Fairness also plays a prominent role in Montanari and Rossi [23], while
the relevance of the chaotic iteration was independently noticed in Fages,

Fowler, and Sola [16] and van Emden [27]. In the latter paper the generic
chaotic iteration algorithm CII was formulated and proved correct for the do-
main reduction functions de�ned in Benhamou and Older [6] and it was
shown that the limit of the constraint propagation process for these functions
is their greatest common �xpoint.

The idea that the meaning of a constraint is a function (on a constraint
store) with some algebraic properties was put forward in Saraswat, Rinard,
and Panangaden [25], where the properties of being in
ationary (called there
extensive), monotonic and idempotent were singled out.

A number of other constraint propagation algorithms that were proposed
in the literature, for example, in four out the �rst �ve issues of the Constraints
journal, can be shown to be instances of the generic chaotic iteration algorithms.

In each of the discussed algorithms a minor optimization can be incorpo-
rated the purpose of which is to stop the computation as soon as one of the
variable domains becomes empty. In some of the algorithms discussed above
this optimization is already present. For simplicity we disregarded it in our
discussion. This modi�cation can be easily incorporated into our generic algo-
rithms by using v -po's with the greatest element > and by enforcing an exit
from the while loop as soon as one of the components of d becomes >.

243

4.2. Idempotence

In most of the above papers the (often implicitly) considered semantic, con-
straint or domain reduction functions are idempotent, so we now comment on
the relevance of this assumption.

To start with, we exhibited in Example 22 and 31 natural constraint and
domain reduction functions that are not idempotent. Secondly, as noticed in
Older and Vellino [24], another paper on constraints for interval arithmetic
on reals, we can always replace each non-idempotent in
ationary function f by

f�(x) :=

1G
i=1

f i(x):

The following is now straightforward to check.

Note 36. Consider an t-po (D; v) and a function f on D.

{ If f is in
ationary, then so is f�.

{ If f is monotonic, then so f�.

{ If f is in
ationary and (D; v) has the �nite chain property, then f� is

idempotent.

{ If f is idempotent, then f� = f .

{ Suppose that (D; v) has the �nite chain property. Let F := ff1; : : :; fkg be

a set of in
ationary, monotonic functions on D and let F � := ff�1 ; : : :; f
�
kg.

Then the limits of all chaotic iterations of F and of F � exist and always

coincide. 2

Consequently, under the conditions of the last item, every chaotic iteration
of F � can be modeled by a chaotic iteration of F , though not conversely. In
fact, the use of F � instead of F can lead to a more limited number of chaotic
iterations. This may mean that in some speci�c algorithms some more e�cient
chaotic iterations of F cannot be realized when using F �. For speci�c functions,
for instance those studied in Examples 22 and 31, the computation by means
of F � instead of F imposes a forced delay on the application of other reduction
functions.

4.3. Comparing Constraint Propagation Algorithms

The CI Theorem 14 and its reformulations for the CII, CIQ and CIIQ algo-
rithms allow us to establish equivalence between these algorithms. More pre-
cisely, these result show that in case of termination all four algorithms compute
in the variable d the same value.

In speci�c situations it is natural to consider various domain reduction or
constraint reduction functions. When the adopted propagation algorithms are
instances of the generic algorithms here studied, we can use the Comparison
Corollary 11 to compare their outcomes. By way of example consider two in-
stances of the CII algorithm: one in which for some binary constraints the pair
of the domain reduction functions de�ned in Example 27 is used, and another

244

in which for these binary constraints the domain reduction function de�ned in
Example 28 is used.

We now prove that in case of termination both algorithms compute in d the
same value. Fix a binary constraint C and adopt the notation of Example 27
and of Example 28 used with n = 2. Note that for X 2 DO1;2

{ �C(X) = �1 � �2(X),

{ �i(X) � �C(X) for i 2 [1::2].

Clearly, both properties hold when each function f 2 f�C ; �1; �2g is replaced by
its canonic extension f+ to the Cartesian product DO of all domains P(Di). By
the Stabilization Corollary 10, Comparison Corollary 11 and the counterpart
of the CI Theorem 14 for the CIIQ algorithm we conclude that both algorithms
compute in d the same value.

An analogous analysis for arbitrary constraints allows us to compare the
algorithm of Davis [12] discussed in Subsection 4.1 with that de�ned in Exam-
ple 34. We can conclude that in case of termination both algorithms achieve
arc-consistency for n-ary constraints.

4.4. Assessment and Future Work

In this paper we showed that several constraint propagation algorithms can
be explained as simple instances of the chaotic iteration algorithms. Such a
generic presentation also provides a framework for generating new constraint
propagation algorithms that can be tailored for speci�c application domains.
Correctness of these constraint propagation algorithms does not have to be
reproved each time anew.

It is unrealistic, however, to expect that all constraint propagation algo-
rithms presented in the literature can be expressed as direct instances of the
generic algorithms here considered. The reason is that for some speci�c reduc-
tion functions some additional properties of them can be exploited.

An example is the perhaps most known algorithm, the AC-3 arc-consistency
algorithm of Mackworth [19]. We found that its correctness relies in a sub-
tle way on a commutativity property of the projection functions discussed in
Example 27. This can be explained by means of a generic algorithm only once
one uses the information which function was applied last.

Another issue is that some algorithms, for example the AC-4 algorithm of
Mohr and Henderson [20] and the GAC-4 algorithm of Mohr and Masini

[21], associate with each domain element some information concerning its links
with the elements of other domains. As a result these algorithms operate on
some \enhancement" of the original domains. To reason about these algorithms
one has to relate the original CSP to a CSP de�ned on the enhanced domains.

In an article under preparation we plan to discuss the re�nements of the
general framework here presented that allow us to prove correctness of such
algorithms in a generic way.

245

Acknowledgements

This work was prompted by our study of the �rst version of van Emden [27].
Rina Dechter helped us to clarify (most of) our initial confusion about con-
straint propagation. Discussions with Eric Monfroy helped us to better articu-
late various points put forward here. Nissim Francez, Dmitry Ushakov and both
anonymous referees provided us with helpful comments on previous versions of
this paper.

References

1. K. R. Apt (1998). A proof theoretic view of constraint programming. Fun-
damenta Informaticae. In press. Available via http://www.cwi.nl/~apt.

2. J. Barwise and L. Moss (1996). Vicious Circles: on the mathematics of

circular phenomena. CSLI{Lecture Notes. Center for the Study of Language
and Information, Stanford, California.

3. G. M. Baudet (1978). Asynchronous iterative methods for multiproces-
sors. Journal of the ACM 25(2), 226{244.

4. F. Benhamou (1996). Heterogeneous constraint solving. M. Hanus and
M. Rodriguez-Artalejo, editors, Proceeding of the Fifth International

Conference on Algebraic and Logic Programming (ALP 96), Lecture Notes
in Computer Science 1139, 62{76, Berlin. Springer-Verlag.

5. F. Benhamou, D.A. McAllester, and P. Van Hentenryck (1994).
CLP(intervals) revisited. M. Bruynooghe, editor, Proceedings of the 1994
International Logic Programming Symposium, 124{138. MIT Press.

6. F. Benhamou andW. Older (1997). Applying interval arithmetic to real,
integer and Boolean constraints. Journal of Logic Programming 32(1), 1{24.

7. Y. Caseau (1991). Abstract interpretation of constraints on order-sorted
domains. V. Saraswat and K. Ueda, editors, Proceedings of the 1991

International Logic Programming Symposium, 435{452. The MIT Press.
8. D. Chazan andW. Miranker (1998). Chaotic relaxation. Linear Algebra

and its Applications 2, 199{222.
9. W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrij-

ver (1998). Combinatorial Optimization. John Wiley & Sons, Inc., New
York.

10. P. Cousot (1978). M�ethodes it�eratives de construction et d'approximation

de points �xes d'op�erateurs monotones sur un treillis, analyse s�emantique

des programmes. PhD thesis, Universit�e Scienti�que et M�edicale de Greno-
ble.

11. P. Cousot and R. Cousot (1977). Automatic synthesis of optimal invari-
ant assertions: mathematical foundations. ACM Symposium on Arti�cial

Intelligence and Programming Languages, 1{12. SIGPLAN Notices 12 (8).
12. Ernest Davis (1987). Constraint propagation with interval labels. Arti-

�cial Intelligence 32(3), 281{331, July.
13. Rina Dechter and Judea Pearl (1988). Network-based heuristics for

246

constraint-satisfaction problems. Arti�cial Intelligence 34(1), 1{38, Jan-
uary.

14. Rina Dechter and Peter van Beek (1997). Local and global relational
consistency. Theoretical Computer Science 173(1), 283{308, 20 February.

15. Y. Deville, O. Barette, and P. Van Hentenryck (1997). Constraint
satisfaction over connected row convex constraints. Proceedings of the In-

ternational Joint Conference on Arti�cial Intelligence (IJCAI-97).
16. F. Fages, J. Fowler, and T. Sola (1996). Experiments in reactive

constraint logic programming. Technical report, DMI - LIENS CNRS, Ecole
Normale Sup�erieure. To appear in Journal of Logic Programming.

17. H.-W. G�usgen and J. Hertzberg (1988). Some fundamental properties
of local constraint propagation. Arti�cial Intelligence 36(2), 237{247.

18. O. Lhomme (1993). Consistency techniques for numeric CSPs. Proceedings
of the International Joint Conference on Arti�cial Intelligence (IJCAI-93),
232{238.

19. Alan Mackworth (1977). Consistency in networks of relations. Arti�cial
Intelligence 8(1), 99{118.

20. R. Mohr and T.C. Henderson (1986). Arc-consistency and path-
consistency revisited. Arti�cial Intelligence, 28:225{233, 1986.

21. R. Mohr and G. Masini (1988). Good old discrete relaxation. Y. Ko-
dratoff, editor, Proceedings of the 8th European Conference on Arti�cial

Intelligence (ECAI), pages 651{656. Pitman Publishers.
22. E. Monfroy and J.-H. R�ety (1998). Chaotic iteration for distributed

constraint propagation. CWI, Amsterdam. In preparation.
23. U. Montanari and F. Rossi (1991). Constraint relaxation may be perfect.

Arti�cial Intelligence 48, 143{170.
24. W. Older andA. Vellino (1993). Constraint arithmetic on real intervals.

Fr�ed�eric Benhamou andAlain Colmerauer, editors, Constraint Logic
Programming: Selected Research, 175{195. MIT Press.

25. V.A. Saraswat, M. Rinard, and P. Panangaden (1991). Semantic
foundations of concurrent constraint programming. Proceedings of the Eigh-
teenth Annual ACM Symposium on Principles of Programming Languages

(POPL'91), 333{352.
26. V. Telerman and D. Ushakov (1996). Data types in subde�nite mod-

els. J. A. Campbell, J. Calmet and J. Pfalzgraf, editors, Arti�cial
Intelligence and Symbolic Mathematical Computations, Lecture Notes in
Computer Science 1138, 305{319, Berlin, Springer-Verlag.

27. M. H. van Emden (1997). Value constraints in the CLP scheme. Con-

straints 2(2), 163{184.
28. Pascal Van Hentenryck, Yves Deville, and Choh-Man Teng

(1992). A generic arc-consistency algorithm and its specializations. Ar-

ti�cial Intelligence 57(2{3), 291{321, October.
29. D. L. Waltz (1975). Generating semantic descriptions from drawings of

scenes with shadows. P. H. Winston, editor, The Psychology of Computer

Vision. McGraw Hill.

247

To appear in Theoretical Computer Science.

248

